Direct Numerical Simulation in a Lid-driven Cavity at High Reynolds Number
نویسنده
چکیده
Direct numerical simulation of the flow in a lid-driven cubical cavity has been carried out at high Reynolds numbers (based on the maximum velocity on the lid), between 1.2 104 and 2.2 104. An efficient Chebyshev spectral method has been implemented for the solution of the incompressible Navier-Stokes equations in a cubical domain. The resolution used up to 5.0 million Chebyshev collocation nodes, which enable the detailed representation of all dynamically significant scales of motion. The mean and root-mean-square velocity statistics are briefly presented.
منابع مشابه
Numerical Simulation of Mixed Convection Flows in a Square Double Lid-Driven Cavity Partially Heated Using Nanofluid
A numerical study has been done through an Al2O3–water in a double lid-driven square cavity with various inclination angles and discrete heat sources. The top and right moving walls are at low temperature. Half of the left and bottom walls are insulated and the temperatures of the other half are kept at high. A large number of simulations for a wide range of Richardson number ...
متن کاملSimulation of Lid Driven Cavity Flow at Different Aspect Ratios Using Single Relaxation Time Lattice Boltzmann Method
Abstract Due to restrictions on the choice of relaxation time in single relaxation time (SRT) models, simulation of flows is generally limited base on this method. In this paper, the SRT lattice Boltzmann equation was used to simulate lid driven cavity flow at different Reynolds numbers (100-5000) and three aspect ratios, K=1, 1.5 and 4. The point which is vital in convergence of this scheme ...
متن کاملNumerical Investigation of Magnetic Field Effects on Mixed Convection Flow in a Nanofluid-filled Lid-driven Cavity
In this work, the stencil adaptive method is applied to investigate the effects of a magnetic field on mixed convection of Al2O3-water nanofluid in a square lid-driven cavity. The incompressible Navier-Stokes equations are solved by an adaptive mesh method which has superior numerical advantages compared to the traditional method on the uniform fine grid. The main objective of this study is to ...
متن کاملNumerical Study of Hydro-Magnetic Nanofluid Mixed Convection in a Square Lid-Driven Cavity Heated From Top and Cooled From Bottom
In the present research mixed convection flow through a copper-water nanofluid in a driven cavity in the presence of magnetic field is investigated numerically. The cavity is heated from top and cooled from bottom while its two vertical walls are insulated. The governing equations including continuity, N-S and energy equations are solved over a staggered grid system. The study is conducted for ...
متن کاملCombined mixed convection and radiation simulation of inclined lid driven cavity
This paper presents a numerical investigation of the laminar mixed convection flow of a radiating gas in an inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The governing differential equations including continuity, momentum and energy are solved numerically by the computational fluid dynamics techniques (CFD) to obtain the velocity and tem...
متن کامل